蓝宝石材料c向是什么(a向蓝宝石与c向蓝宝石表面能)

博主:adminadmin 2023-02-24 22:54:06 条评论
摘要:今天给各位分享蓝宝石材料c向是什么的知识,其中也会对a向蓝宝石与c向蓝宝石表面能进行解释,现在开始吧!hi你好我想问下蓝宝石玻璃片应该怎么切割呢?是垂...

今天给各位分享蓝宝石材料c向是什么的知识,其中也会对a向蓝宝石与c向蓝宝石表面能进行解释,现在开始吧!

hi 你好 我想问下蓝宝石玻璃片应该怎么切割呢?是垂直c轴方向还是 就是c轴方向呢? 谢谢

蓝宝石材料c向是什么(a向蓝宝石与c向蓝宝石表面能)

首先说一下,蓝宝石玻璃片这个说法不太对。因为蓝宝石是单晶三氧化二铝的俗称。是单晶就不再是玻璃了。另外你提到的c轴之类只能是单晶才有的。

蓝宝石单晶的晶碇是采用拉单晶的方法拉出来的。刚拉出来的晶碇很大,需要切割后才能使用。切割的方法就是普通的衬底制备中的切、磨、抛的工艺(相关的你可以查一下蓝宝石衬底制备技术)。

关于c轴的问题,这和蓝宝石衬底的使用有关了,目前常规使用的LED衬底都是c面蓝宝石,也就是c轴是垂直平面的。但是现在有些厂家也在生长非极性面和半极性面的GaN,这就需要蓝宝石衬底平行或者是一定角度相交于c轴。

对于c轴的确定,也就是晶面的确定,必须通过仪器,XRD就可以了。(当然拉单晶的时候生长较快的方向一般是c轴

蓝宝石晶体

宝石作为目前已知的硬度最高的物质之一,有着超高的熔点(2000C),绝佳的物理,化学,光学性能,被广泛应用于各种严苛的工程环境中。

蓝宝石晶体材料是由纯度大于99.999%的高纯度氧化铝(Al2O3)在长晶炉里经高温熔化结晶而形成的六万晶格结构的晶体,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2050℃)等性能,因此常被用来作为光学元件、红外装置、高强度镭辐射材料及光罩材料。

蓝宝石晶体 具有优异的力学性能、良好的热学性能,是半导体GaN/ Al2O3发光二极管(LED)、大规模集成电路SOI和SOS及超导纳米结构薄膜等理想的衬底材料,属于国家重点支持和鼓励发展的能源材料及光电子材料。

蓝宝石IPL导光块产品是用于激光美容仪的导光块,是一个长方体光学玻璃,六面全部光学抛光,在其中一个端面镀上截止滤光膜,一般使575nm以下的光截止,600nm~1200nm透过,透过去的光线通过导光块的四周全反射最后由另一个端面出射,然后照射到皮肤表面进行激光美容。

我司生产了一系列的蓝宝石窗口片,并得到广泛的应用。与玻璃制品相比,由蓝宝石生产的光学窗口片具有优异的耐磨性、韧性和抗断裂性。

我们平治光学生产的蓝宝石窗口片是产自我们热交换法(HEM)长晶的蓝宝石晶锭,根据客户要求定制尺寸。

我们平治光学可以提供的产品:蓝宝石晶体、蓝宝石导光体、脱毛仪用蓝宝石、IPL蓝宝石导光体、脱毛仪专用蓝宝石。公司主营:滤光片,ND镜,CPL偏振镜,分光片,反射镜,美容仪器滤光片,衰减片,窄带滤光片,透镜,棱镜。

c向蓝宝石是什么意思

一个完整的蓝宝石晶体应该有任意的晶向,但常用的有C向,A向,M向,R向,N向,其晶面指数分别为C(0001),A(11-20),M(10-10),R(1-102),N(11-23)。

蓝宝石的晶体化学特征

(一)晶体结构

蓝宝石属于三方晶系,空间群为

,晶胞参数a0=0.477nm,c0=1.304nm,Z=6,在其晶体结构中,O2-作六方最紧密堆积,堆积层垂直于三次轴,Al3+充填了由O2-形成的八面体空隙数的2/3,(AlO5)八面体在垂直c轴方向以共棱方式连接成层,O为四次配位,为四个Al所围绕;平行c轴方向,以八面体共面或共角联结,构成两个实心八面体和一个空心八面体相间排列的柱体(图2-1)。(AlO6)八面体沿c轴方向构成三次螺旋对称轴,由于相邻Al3+之间的排列,使(AlO6)八面体显示三方畸变的特点,部分Al—O键长为0.1856nm,部分为0.1969nm,相邻的O—O键长为0.252~0.287nm,垂直c轴相邻的键长为0.279nm,平行c轴的Al—Al键长为0.265nm,晶体结构在//c和⊥c方向的异向性,导致了蓝宝石对光波吸收的差异,在颜色上表现出明显的异向性(沿c轴方向为蓝色,垂直c轴方向为蓝绿色至绿色)。

(二)化学成分

蓝宝石的化学成分在理论上与刚玉矿物种成分具有一致性,其理论值Al为53.2%,O为46.8%,晶体化学式为Al2O3。但由于形成蓝宝石地质环境的复杂性,其化学成分尤其是微量元素的含量具有较大的差异。我们选择一些不同颜色的改色前山东昌乐地区蓝宝石原石进行了电子探针分析,其结果列于表2-3。为了与其它国内产状相类似的蓝宝石对比,表中还列出了海南(石桂华等,1988)、江苏(郑子俪,1988)蓝宝石的成分分析值。

由表2-3可见,昌乐蓝宝石主要成分为Al2O3,其质量分数为97.55%~98.88%,所含微量成分主要有SiO2、TiO2、TFeO(Fe2+O+

)、MnO等,主要以类质同象存在于刚玉的晶格中,从单颗粒不同部位分析结果可见,它们在晶格中分布比较均匀。一般认为,微量元素Fe、Ti、Mn为蓝宝石的主要致色元素(吴瑞华等,1994),故昌乐蓝宝石的主要致色元素为Fe、Ti、Mn,铁的含量最高,而且其含量比Ti、Mn高得多,在致色离子中起主导作用,海南、江苏的蓝宝石具有相同特点。

图2-1 刚玉的三个不同方向结构示意图(据Hughes W.Rich,1997)

近几年来人们在卢旺达西南部的桑古谷地区发现了与山东昌乐蓝宝石地质产状十分相似的蓝宝石矿(M.S.Krzemnicki et al.,1996),研究结果表明蓝宝石来源一种延着东非大裂谷在第三纪岩浆扩张阶段溢出的碱性玄武岩的熔岩流。该矿区蓝宝石的电子探针化学成分分析结果(表2-4)与昌乐蓝宝石具相似性。

总体来看,蓝黑色、深蓝色蓝宝石的全铁含量较高,颜色稍浅的全铁含量相对较低,但蓝色深浅与全铁含量之间没有严格的线性关系,这个问题还有待于进一步研究。棕色蓝宝石的全铁含量最高,黄色蓝宝石的全铁含量也较高。Ti与Mn的含量普遍很低,而且不呈规律性。由此可见,铁是昌乐蓝宝石十分重要的致色元素,其含量与颜色之间具有十分密切的关系。

与世界著名产地蓝宝石的Fe、Ti质量分数及m(Fe)/m(Ti)值相比(表2-5)(H.Harder,1969),昌乐蓝宝石的Fe、Ti质量分数及m(Fe)/m(Ti)值与泰国蓝宝石相似,Fe高于Ti几十到几百倍,在宝石市场中其颜色均属同一类型,即深蓝色。而优质的缅甸、斯里兰卡蓝宝石中Fe含量比昌乐、泰国蓝宝石低很多,而且Fe与Ti含量相当,m(Fe)/m(Ti)值接近于1,呈现出优美明亮的浅蓝色、天蓝色、矢车菊蓝等,具有很高的美学及商业价值。因此,要对昌乐蓝宝石进行改色,使其颜色向优质蓝宝石靠近,从根本上来说,是降低铁在晶体中的含量,保留或增加Ti的含量,减小m(Fe)/m(Ti)值,向世界优质蓝宝石m(Fe)/m(Ti)值靠近,这与目前世界宝石界公认的蓝宝石改色理论相一致。

表2-3 蓝宝石电子探针成分分析结果(wB/%)

测试条件:JCXA-733,Link 860Ⅱ;工作电压15kV;电流200mA。标样:刚玉。

测试单位:中国地质大学(北京)电子探针室。

表2-4 卢旺达西南部两个蓝宝石的定量分析结果(wB/%)

n.d.表示低于检测限。

据M.S.Krzemnicki等,1996。

表2-5 山东昌乐及世界著名产地蓝宝石Fe、Ti含量表

①通过表1中氧化物质量分数换算成元素的质量分数。

(三)原子吸收光谱分析

为了较精确测得昌乐蓝宝石的致色离子Fe和Ti的含量,笔者进行了原子吸收光谱的测定。由于刚玉硬度仅次于金刚石,且物理化学性质稳定,熔点近2000℃,因此给测试带来一定困难。在制样过程中,首先利用刚玉的脆性将样品砸碎,然后用吸铁石不断将混入的铁屑吸出,再将其在1∶3盐酸中浸泡48小时,最大限度地除去附着的铁屑。然后用蒸馏水冲洗、过滤。在熔矿过程中采用硼砂-碳酸钠熔剂,既可分解完全又较易提取,且降低了熔点。由此可见分析结果除铁可能稍偏高外,数据还是可信的。

为了与探针结果对比,将分析的Fe2O3含量转变为FeO含量,从表2-6中可见FeO与TiO2数值与探针结果一致,并直观地显示出FeO的含量与颜色的深浅关系更为密切,含量越低,颜色越浅,而TiO2的含量与颜色的关系却很难简单地体现出来。同时还表明1300℃热处理时FeO、TiO2含量几乎不受影响。

表2-6 蓝宝石中Fe、Ti原子吸收分析

(四)成分中的Fe、Ti线、面能谱分析

为了了解Fe和Ti在蓝宝石晶体中的分布情况,首先对Fe和Ti进行了面扫描,结果表明半透明深蓝色蓝宝石中Fe和Ti近于均匀分布。然后对Fe和Ti进行大范围线扫描(扫描线长5.35mm),研究Fe、Ti的成分环带是否与颜色环带相同(图2-2)。由于蓝宝石中Fe、Ti含量相对于仪器测试精度较低,因此误差较大,但仍可反映出总的分布规律:成分环带与颜色环带几乎一致,而Fe和Ti的含量之间有一定的联系,Fe含量高,Ti含量也较高,但这种规律并不绝对。由测试样品生长环带形态可知,在靠晶体外缘一侧,Fe含量明显较高,这可能是由于蓝宝石由碱性玄武岩浆(超镁铁质)携至地表,岩浆中铁含量较高,部分铁向晶体内扩散造成的。

图2-2 蓝宝石5.35mm Fe、Ti线扫描及样品素描

蓝宝石A晶向、R晶向、M晶向、C晶向分别是什么意思?

晶体的一个基本特点是具有方向性,沿晶格的不同方向晶体性质不同。布拉格点阵的格点可以看成分列在一系列相互平行的直线系上,这些直线系称为晶列。同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。?简单的说,晶向就是通过晶体中原子中心的不同方向的原子列。? 

 设想在晶格中任取一点O作为原点,并以基失a、b、c?为轴建立坐标系,于是在此通过原点的晶列上,沿晶向方向任一格点A的位失为??a?+??b?+??c?则晶向就用?、、来表示,写成[????]。标志晶向的这组数成为晶向指数。? 

 由于晶体具有对称性,有对称性联系着的那些晶向可以方向不同,但它们的周期却相同,因而是等效的,这些等效晶向的全体可用尖括号????来表示。如[100]、[010]、[001]及其相反晶向就可以用100表示。

LED用蓝宝石衬底材料有哪几种?

LED用衬底材料一般有蓝宝石衬底,碳化硅衬底及硅衬底三种,其中蓝宝石衬底应用最广泛,因为其加工方法以及加工成本等与其他两种相比较都有不小的优势。虽说在晶格匹配上面是氮化镓衬底砷化镓衬底最为匹配,但其生产加工方法要比碳化硅及硅等都更难上加难。

当前用于GaN基LED的衬底材料比较多,但是能用于商品化的衬底目前只有两种,即蓝宝石和碳化硅衬底。其它诸如GaN、Si、ZnO衬底还处于研发阶段,离产业化还有一段距离。

一、红黄光LED

红光LED以GaP(二元系)、AlGaAs(三元系)和AlGaInP(四元系)为主,主要采用GaP和GaAs作为衬底,未产业化的还有蓝宝石Al2O3和硅衬底。  

1、GaAs衬底:在使用LPE生长红光LED时,一般使用AlGaAs外延层,而使用MOCVD生长红黄光LED时,一般生长AlInGaP外延结构。外延层生长在GaAs衬底上,由于晶格匹配,容易生长出较好的材料,但缺点是其吸收这一波长的光子,布拉格反射镜或晶片键合技术被用于消除这种额外的技术问题。

2、GaP衬底:在使用LPE生长红黄光LED时,一般使用GaP外延层,波长范围较宽565-700nm;使用VPE生长红黄光LED时,生长GaAsP外延层,波长在630-650nm 之间;而使用MOCVD时,一般生长AlInGaP外延结构,这个结构很好的解决了GaAs衬底吸光的缺点,直接将LED结构生长在透明衬底上,但缺点是晶格失配,需要利用缓冲层来生长InGaP和AlGaInP结构。另外,GaP基的III-N-V材料系统也引起广泛的兴趣,这种材料结构不但可以改变带宽,还可以在只加入0.5 %氮的情况下,带隙的变化从间接到直接,并在红光区域具有很强的发光效应(650nm)。采用这样的结构制造LED,可以由GaNP 晶格匹配的异质结构,通过一步外延形成LED结构,并省去GaAs衬底去除和晶片键合透明衬底的复杂工艺。

二、蓝绿光LED

用于氮化镓研究的衬底材料比较多,但是能用于生产的衬底目前只有二种,即蓝宝石Al2O3和碳化硅SiC衬底。

1、氮化镓衬底:用于氮化镓生长的最理想的衬底自然是氮化镓单晶材料,这样可以大大提高外延片膜的晶体品质,降低位元错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。可是,制备氮化镓体单晶材料非常困难,到目前为止尚未有行之有效的办法。有研究人员通过HVPE方法在其他衬底(如Al2O3、SiC、LGO)上生长氮化镓厚膜,然后通过剥离技术实现衬底和氮化镓厚膜的分离,分离后的氮化镓厚膜可作为外延用的衬底。这样获得的氮化镓厚膜优点非常明显,即以它为衬底外延的氮化镓薄膜的位元错密度,比在Al2O3、SiC上外延的氮化镓薄膜的位元错密度要明显低;但价格昂贵。因而氮化镓厚膜作为半导体照明的衬底之用受到限制。

2、蓝宝石Al2O3衬底:目前用于氮化镓生长的最普遍的衬底是Al2O3,其优点是化学稳定性好、不吸收可见光、价格适中、制造技术相对成熟;不足方面虽然很多,但均一一被克服,如很大的晶格失配被过渡层生长技术所克服,导电性能差通过同侧P、N电极所克服,机械性能差不易切割通过雷射划片所克服,很大的热失配对外延层形成压应力因而不会龟裂。但是,差的导热性在器件小电流工作下没有暴露出明显不足,却在功率型器件大电流工作下问题十分突出。

3、SiC衬底:除了Al2O3衬底外,目前用于氮化镓生长衬底就是SiC,它在市场上的占有率位居第2,目前还未有第三种衬底用于氮化镓LED的商业化生产。它有许多突出的优点,如化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但不足方面也很突出,如价格太高、晶体品质难以达到Al2O3和Si那麼好、机械加工性能比较差。 另外,SiC衬底吸收380 nm以下的紫外光,不适合用来研发380 nm以下的紫外LED。由于SiC衬底优异的的导电性能和导热性能,不需要像Al2O3衬底上功率型氮化镓LED器件采用倒装焊技术解决散热问题,而是采用上下电极结构,可以比较好的解决功率型氮化镓LED器件的散热问题。目前国际上能提供商用的高品质的SiC衬底的厂家只有美国CREE公司。

4、Si衬底:在硅衬底上制备发光二极体是本领域中梦寐以求的一件事情,因为一旦技术获得突破,外延片生长成本和器件加工成本将大幅度下降。Si片作为GaN材料的衬底有许多优点,如晶体品质高,尺寸大,成本低,易加工,良好的导电性、导热性和热稳定性等。然而,由于GaN外延层与Si衬底之间存在巨大的晶格失配和热失配,以及在GaN的生长过程中容易形成非晶氮化硅,所以在Si 衬底上很难得到无龟裂及器件级品质的GaN材料。另外,由于硅衬底对光的吸收严重,LED出光效率低。

5、ZnO衬底:之所以ZnO作为GaN外延片的候选衬底,是因为他们两者具有非常惊人的相似之处。两者晶体结构相同、晶格失配度非常小,禁带宽度接近(能带不连续值小,接触势垒小)。但是,ZnO作为GaN外延衬底的致命的弱点是在GaN外延生长的温度和气氛中容易分解和被腐蚀。目前,ZnO半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料品质达不到器件水准和P型掺杂问题没有真正解决,适合ZnO基半导体材料生长的设备尚未研制成功。今后研发的重点是寻找合适的生长方法。但是,ZnO本身是一种有潜力的发光材料。 ZnO的禁带宽度为3.37 eV,属直接带隙,和GaN、SiC、金刚石等宽禁带半导体材料相比,它在380 nm附近紫光波段发展潜力最大,是高效紫光发光器件、低阈值紫光半导体雷射器的候选材料。ZnO材料的生长非常安全,可以采用没有任何毒性的水为氧源,用有机金属锌为锌源。

6、ZnSe衬底:有人使用MBE在ZnSe衬底上生长ZnCdSe/ZnSe等材料,用于蓝光和绿光LED器件,最先由住友公司推出,由于其不需要荧光粉就可以实现白光LED的目标,故可降低成品,同时电源回路构造简单,其操作电压也比GaN白光LED低。但是其并没有推广,这是因为由于使用MOCVD,p型参杂没有很好解决,试验中需要用到Sb来参杂,所以一般采用MBE生长,同时其发光效率较低,,而且由于自补偿效应的影响,使得其性能不稳定,器件寿命较短。

现在蓝宝石衬底是最为广泛应用的,晶体主要材料来自美国,俄罗斯,台湾,大陆也开始慢慢起来了

关于蓝宝石材料c向是什么和a向蓝宝石与c向蓝宝石表面能的介绍到此就结束了,记得收藏关注本站。