生产双相不锈钢管的方法及步骤

本发明涉及一种生产双相不锈钢管的方法。
背景技术:
具有下文定义的组成的双相不锈钢管用于广泛的各种应用中,在所述应用中它们经受腐蚀介质以及大量的机械负载。在生产这种双相不锈钢管期间,为了获得具有所需屈服强度的钢管,必须恰当设置不同的工艺参数。已经发现对材料的最终屈服强度具有重要影响的工艺参数如下:热变形程度、冷变形程度和在将热挤压管冷轧至其最终尺寸的过程期间管直径与管壁缩减之比。这些工艺参数必须根据双相不锈钢的具体组成和双相不锈钢管的期望屈服强度来设定。
到目前为止,现有技术依靠进行大量试验以找到工艺参数值,从而导致实现双相不锈钢管的目标屈服强度。这种试验费时且昂贵。因此,用于确定对屈服强度至关重要的工艺参数的更具成本效益的方法是期望的。
ep2388341提出了一种用于生产具有特定化学组成的双相不锈钢管的方法,其中针对管的预定目标屈服强度是通过一个给定的方程式来确定在最终冷轧步骤中的面积缩减方面的加工率(%),所述给定的方程式还包括特定合金化元素对加工率与目标屈服强度之间的关系的影响。
本发明的目的在于通过设定如下文所定义的q值和如下文所定义的冷轧度r来提供用于制造双相不锈钢管的替代方法,以实现制造的双相不锈钢管的目标屈服强度,并由此改善总制造效率。
技术实现要素:
因此,本发明因此涉及一种生产双相不锈钢管的方法,所述双相不锈钢具有如下组成(单位为重量%)
余量为fe和不可避免的杂质,
所述方法包括如下步骤:
a)制造所述双相不锈钢的锭料或连续浇铸的坯料;
b)将从步骤a)得到的所述锭料或坯料热挤压成管;和
c)将从步骤b)得到的所述管冷轧至其最终尺寸;
其中经过冷轧的所述管的外径d和壁厚t分别为50~250mm和5~25mm,
其中,对于所述冷轧的步骤,以满足如下方程式的方式设置r和q:
rp0.2目标=416.53+113.26·logq+4.0479·r+2694.9·c%-82.750·(logq)2-0.04279·r2-2.2601·logq·r+16.9·cr%+26.1·mo%+83.6·n%±z(1)
其中
-rp0.2目标是目标屈服强度且为800~1100mp,
-q=(w0-w1)×(od0-w0)/w0((od0-w0)-(od1-w1))(2)
其中w1是冷轧前的管壁厚度,w0是冷轧后的管壁厚度,od1是冷轧前管的外径,且od0是冷轧后管的外径,
-r是冷轧度并定义为
-其中a1是冷轧前管的横截面积且a0是冷轧后管的横截面积
-z=65,
并且其中0<q<3.6。
由式(1)表示的关系将使得基于双相不锈钢的组成(即元素c、cr、mo和n的含量)以及得到的管的目标屈服强度来确定r和q的工艺参数值是可行的。所述目标屈服强度为800~1100mpa,例如900~1100mpa。
式(1)可写成如下的式:
rp0.2目标-z≤416.53+113.26·logq+4.0479r+2694.9c%-82.750·(logq)2-0.04279·r2-2.2601·logq·r+16.9·cr%+26.1·mo%+83.6·n%≤rp0.2目标+z。
根据一个实施方式,z=50。根据另一个实施方式,z=20。根据又一个实施方式,z=0。
根据双相不锈钢的组成和待生产的管的目标屈服强度,可以通过迭代计算程序来设定r和q的值,所述迭代计算程序旨在找到满足方程式(1)的那些r和q值。
将冷轧度r定义为
其中a1为冷变形前管的横截面积且a0为冷变形后管的横截面积。
至于双相不锈钢的组成,关于其中的各种合金化元素应注意以下内容:
碳,c是用于稳定奥氏体相的代表性元素和用于保持机械强度的重要元素。然而,如果使用大含量的碳,则碳将以碳化物的形式析出并由此降低耐腐蚀性。根据一个实施方式,上文和下文中公开的方法中使用的双相不锈钢的碳含量为0~0.3重量%。根据一个实施方式,碳含量为0.008重量%~0.03重量%,例如0.008重量%~0.2重量%。
铬,cr对上文或下文定义的双相不锈钢的耐腐蚀性、特别是耐点蚀性具有强烈的影响。cr改善了屈服强度,并且抵消了双相不锈钢变形时奥氏体结构向马氏体结构的转变。然而,cr含量的增加将导致形成不想要的稳定的氮化铬和σ相以及更快速地生成σ相。根据一个实施方式,在上文和下文中公开的方法中使用的双相不锈钢的铬含量为22重量%~26重量%,例如23重量%~25重量%。
铜,cu对耐腐蚀性具有积极的影响。cu被有目的地添加到如上文或下文中所定义的双相不锈钢中,或者已经存在于用于生产钢的报废物品中,并且使其保留在其中。过高含量的cu将导致热加工性和韧性降低,因此由于这些原因而应该避免。根据一个实施方式,上文和下文中公开的方法中使用的双相不锈钢的铜含量为0~0.5重量%,例如0~0.2重量%。根据一个实施方式,铜含量为0.1重量%~0.2重量%。
锰,mn对如上文或下文中所定义的双相不锈钢具有变形硬化作用。已知mn还与钢中存在的硫一起形成硫化锰,由此改善热加工性。然而,如果mn含量过高,则mn易于对耐腐蚀性和热加工性两者产生不利影响。根据一个实施方式,上文和下文中公开的方法中使用的双相不锈钢的锰含量为0~1.2重量%,例如0~1.0重量%。根据一个实施方式,锰含量为0.35重量%~1.0重量%,例如0.40重量%~0.9重量%。
钼,mo对上文或下文中定义的双相不锈钢的耐腐蚀性有强的影响,并且其严重影响耐点蚀当量(pre)。mo对屈服强度也有积极的影响,并增加了在该温度下不希望的σ相稳定的温度并进一步促进了其产生速率。另外,mo具有稳定铁素体的作用。根据一个实施方式,上文和下文中公开的方法中使用的双相不锈钢的钼含量为3.0重量%~4.0重量%。
镍,ni对相对于一般腐蚀的抗性具有积极作用。ni还具有强的稳定奥氏体的作用。根据一个实施方式,上文和下文中公开的方法中使用的双相不锈钢的镍含量为5.0重量%~7.0重量%,例如5.5重量%~6.5重量%。
氮,n对如上文或下文中所定义的双相不锈钢的耐腐蚀性具有积极作用,并且还有助于变形硬化。它对耐点蚀当量pre(pre=cr+3.3mo+16n)具有强的影响,并且还具有强的稳定奥氏体的作用,并抵消在双相不锈钢塑性变形时从奥氏体结构向马氏体结构的转变。根据一个实施方式,在上文或下文中公开的方法中使用的双相不锈钢的氮含量为0~0.35重量%。根据一个替代性实施方式,以0.1重量%或更高的量添加n。然而,如果含量太高,n会促进氮化铬的产生,由于氮化铬对延展性和耐腐蚀性的不利影响而应避免氮化铬的产生。因此,根据一个实施方式,n的含量因此小于或等于0.35重量%,例如0.1重量%~0.35重量%。
硅,si通常存在于双相不锈钢中,因为它可在其早期生产时已经被添加以用于脱氧。过高的si含量可在双相不锈钢的后续热处理或焊接时导致金属间化合物的析出。这种析出会对耐腐蚀性和加工性两者产生不利影响。根据一个实施方式,在上文或下文中公开的方法中使用的双相不锈钢的硅含量为0.2重量%~0.8重量%,例如0.2重量%~0.8重量%,例如0.3重量%~0.6重量%。
磷,p可以作为杂质存在于上文或下文中公开的方法中使用的不锈钢中,并且如果p含量太高,将导致钢的加工性劣化,因此p≤0.04重量%。
硫,s可以作为杂质存在于上文或下文中公开的方法中使用的不锈钢中,并且如果s含量太高,将导致钢的加工性劣化,因此s≤0.03重量。
氧,o可以作为杂质存在于上文或下文中公开的方法中使用的不锈钢中,其中o≤0.010重量%。
任选地,可以将少量的其它合金化元素添加到如上文或下文中所定义的双相不锈钢中,以便改善例如机械加工性或热加工性能如热延展性。这种元素的实例为但不限于rem、ca、co、ti、nb、w、sn、ta、mg、b、pb和ce。这些元素中的一种或多种的量为最多0.5重量%。根据一个实施方式,如上文或下文中所定义的双相不锈钢还可以包含少量在所述工艺期间已经添加的其它合金化元素,例如ca(≤0.01重量%)、mg(≤0.01重量%)和稀土金属rem(≤0.2重量%)。
当使用术语“最大”或“小于或等于”时,本领域技术人员知道范围的下限为0重量%,除非特别指出另一数量。如上文或下文中所定义的双相不锈钢的其余元素是铁(fe)和通常存在的杂质。
杂质的实例是非有意添加但是不能完全避免的元素和化合物,因为它们通常作为杂质存在于例如用于制造马氏体不锈钢的原料或其它合金化元素中。
根据一个实施方式,所述双相不锈钢由在上文或下文中公开的范围内的上文或下文中公开的合金化元素构成。
根据一个实施方式,如上文或下文中所定义的方法中使用的双相不锈钢包含30体积%~70体积%的奥氏体和30体积%~70体积%的铁素体。
根据一个实施方式,在上文或下文中公开的方法中使用的双相不锈钢具有如下组成(单位为重量%):
余量为fe和不可避免的杂质。
根据一个实施方式,如果0<q<1,则25*q<r<40*q+20。
根据一个实施方式,如果1≤q≤2,则25*q≤r≤60。
根据一个实施方式,如果2<q<3.6,则50<r<60。
根据一个实施方式,对于冷轧步骤,以满足下式的方式设置r和q:
rp0.2目标=416.53+113.26·logq+4.0479·r+2694.9·c%-82.750·(logq)2-0.04279·r2-2.2601·logq·r+16.9·cr%+26.1·mo%+83.6·n%
因此,使用式(1),其中z=0。
通过如下非限制性实施例进一步示例本发明。
实施例
在电弧炉中制备不同化学组成的双相不锈钢的钢熔体。使用aod炉,在其中进行脱碳和脱硫处理。然后将熔体铸造成锭料(用于生产外径大于110mm的管)或通过连续浇铸来铸造成坯料(用于生产直径小于110mm的管)。对不同熔体的浇铸不锈钢进行化学组成分析。将结果列于表1中。
表1-不同熔体的化学组成
将所制造的锭料或坯料进行热变形工艺,其中将其挤压成多个管。这些管经受冷变形,其中将管在周期式轧管机中冷轧至其各自的最终尺寸。对于表1中给出的每个试验编号,使用相同的r和q(并且因此轧前外径和轧前壁厚度)制造10~40根管,所述r和q是用于目标屈服强度而确定的,使得满足上文中提出的方程式1。在一个冷轧步骤中实施所述冷轧。
对于每种管,根据iso6892测量两个试验样品的屈服强度,从而导致对于每个试验编号的多个屈服强度测量值。对于每个试验编号,基于所述测量值来计算平均屈服强度。将平均屈服强度与通过上文给出的方程式1计算的目标屈服强度进行比较。将结果示于表2中。更确切地,确定了目标屈服强度,并且基于其和双相不锈钢的组成,通过方程式(1)确定q和r,由此根据上文和下文中给出的教导制造管并以上文中公开的方式测量屈服强度。将各个测量值与目标屈服强度的偏差也记录下来。相对于目标屈服强度的偏差小于+/-65mpa。
表2-计算结果
其中“轧后外径”是冷轧后的管径并且“轧后壁厚”是冷轧后的管壁厚度。
由此能够得出结论,方程式(1)是用于根据双相不锈钢的化学组成和选择的目标屈服强度来设定r和q的极好工具。对于具有预定的最终外径和预定的最终壁厚且从预定几何形状特别是横截面积的坯料输出的特定管,使用方程式(1)将使熟练的从业者在无需经验的条件下能够选择合适的热轧度以及冷轧度和q值。为了满足方程式(1),可以使用迭代计算。如果满足方程式(1),并且双相不锈钢具有如上文中所定义的组成,则源自一个和相同锭料或坯料的单个管样品的屈服强度相对于目标屈服值将不会偏离超过大约+/-65mpa。
技术特征:
技术总结
本发明涉及一种生产双相不锈钢管的方法,所述方法包括如下步骤:a)制造所述双相不锈钢的锭料或连续浇铸的坯料;b)将从步骤a)得到的所述锭料或坯料热挤压成管;和c)将从步骤b)得到的所述管冷轧至其最终尺寸;其中经过冷轧的所述管的外径D和壁厚t分别为50~250mm和5~25mm,其中,对于所述冷轧步骤,以满足如下方程式的方式设置R和Q:Rp0.2目标=416.53+113.26·logQ+4.0479·R+2694.9·C%?82.750·(logQ)2?0.04279·R2?2.2601·logQ·R+16.9·Cr%+26.1·Mo%+83.6·N%±Z(1)其中Rp0.2目标是目标屈服强度且为800~1100MPa;Q=(W0?W1)×(OD0?W0)/W0((OD0?W0)?(OD1?W1))(2),其中W1是冷轧前的管壁厚度,W0是冷轧后的管壁厚度,OD1是冷轧前管的外径,且OD0是冷轧后管的外径;R是冷轧度并定义为(3);其中A1是冷轧前管的横截面积且A0是冷轧后管的横截面积;Z=65;并且其中0<Q<3.6。
技术研发人员:埃里克·科恩伯格;丹尼尔·斯韦德贝格
受保护的技术使用者:山特维克知识产权股份有限公司
技术研发日:2016.12.28
技术公布日:2018.08.31

发表评论